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Some generalisations of the Poisson summation formula 

B J B Crowley 
University of Oxford, Department of Theoretical Physics, 1 Keble Road, Oxford, 
OX1 3NP, UK 

Received 27 February 1979 

Abstract. Some useful generalisations of the Poisson summation formula are presented 
with proofs. These extend the formula to finite sums over arbitrary intervals and to sums of 
derivatives. The results are indicated as being of importance in the treatment of scattering 
in semiclassical quantum theory. 

1. Introduction 

In the following we suggest some useful generalisations of the Poisson summation 
formula that do not appear to be widely known. In particular, the formula is extended 
to finite sums over arbitrary intervals, and to sums of derivatives. The proofs given here 
are based on the Fourier series method (e.g. Courant and Hilbert 1937) rather than the 
contour-integral method? (e.g. Morse and Feshbach 1953). Both methods of proof are 
valid for Dirichlet functions. 

Let f (x)  be a function of a real variable x such that f(x) possesses a Fourier series 
expansion over any unit interval in the range n - $ - C Y  < x < N + 1 - a where n and N 
are integers such that n s N. It is sufficient for f ( x )  to be a Dirichlet function$ for 
n - 1 < x < N + 1. We shall prove the following: 

L N + l  

L N + l  

N m 
1 f(1) = 1 exp[2mri(a -;)I f (A +CY -$) exp(2mrih) dh (1) 

for any real CY such that la\ <$. The sum on the left-hand side of (1) is over integer 
values of 1 in the range n d Id N, while that on the right-hand side is over all integer 
values of m t. If, in addition, the kth derivative, fk(x)  = dkf/dxk, of f(x) exists at each of 
the points x = 1 = n, n + 1, n +2,  . . . N (as would be the case if fk (x)  is Dirichlet), then 
we can also prove that 

1 f k ( l )  = 1 (-2mri)' exp[2mri(a -$)I f(A +CY -4) exp(2mrih) dh 

I = n  m = - a  

N W 

I = n  m=-m 

CY E R ,  la]<;. (2) 
These results can be extended to infinite sums by taking the appropriate limit(s). The 
formulae then remain valid if the sums and integrals are convergent. 

See note added in proof. 
$- If f ( x )  and its first derivatives are bounded and continuous, save possibly for a finite number of points, for 
a < x < b, and f(x) = lim.,o f[f(x + E )  +f(x - E ) ]  for all x in (a, b), then f(x) is a Dirichlet function for x in 
(a, b ) .  
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The special case of (1) when n = 0, N = CO, a = 0 is well known and has been 
extensively applied to treatments of partial-wave series representations of quantal and 
semiclassical scattering amplitudes (e.g. Berry and Mount 1972, Frahn 1975, Rowley 
and Marty 1976, Brink 1978, Schaeffer 1978, Crowley 1978a, b). 

A more general case of (1) arises in the context of general angular-momentum 
quantisation in the semiclassical theory of Crowley (1979) which provides a globally- 
valid uniform approximation to the quantal wavefunction for scattering by a central 
field. The derivation, which is based upon a diffraction-integral representation 
embodying classical Hamilton-Jacobi theory and in which angular-momentum quan- 
tisation is nof a prerequisite, leads to an expression for the asymptotic wavefunction 
having the form of: 

+ S(A) exp[i(kr -$.rr(A +$))I} exp(2m.rrih )F(A, O)A dA, 

where a is a constant so far undetermined, S(A) is the complete semiclassical s matrix, 
and F(A, 0) is related to a Legendre polynomial 9 ( x )  by F(l +B, 0) = PI(COS 0) + 0(1/1) 
for I = integer >> 1. By application of the theorem ( l ) ,  the above becomes 

+S(I+a/4)  exp[i(kr-&r(l + a + a / 4 ) ) ] } F ( I + a / 4 , 8 ) ( 1 + a / 4 )  

1 "  
kr I = O  

=- 1 (21+$a)F(I+a/4)  exp[.rri(l + a / 4 - a ) / 2 ] c o s [ k r - . r r ( 1 + ~ ~ / 4 + % ) / 2 ]  

m 

+ [exp(ikr)/2ikr] (21 + a/4)[S(I + a/4)  - lIF(1 + a/4,6) .  
f = O  

The condition that, when S(A) = 1, the above must yield an asymptotic representation 
of a plane-wave leads to the assignment, a = 2, and hence to angular-momentum 
quantisation in the form of 

1 A-z=l=integer 

where A is the classical angular momentum in units of h. In this way it is shown that 
angular momentum quantisation and the Langer Modification (Berry and Mount 1972) 
are natural consequences of a complete semiclassical theory. Such a theory leads to 
partial-wave representations of a continuum (scattering) wavefunction and the s matrix 
that closely resemble those of the exact theory. 

Equation (2) has recently been applied to the treatment of sums arising in a 
description of the effect of a quasimolecular resonance on a direct-reaction process 
(Crowley 1978b, 0 5 ) .  The transition amplitude f for a direct-reaction process 
dominated by a quasimolecular (potential) resonance in the elastic scattering is derived 
semiclassically in the form, 

L" 00 

t = 1 m exp[i(v - l ) m r ]  f ( A )  exp(2.rrimA) dA 
m=-m 

where Y is an integer equal to the change, in units of h, in the angular-momentum 
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component normal to the scattering plane; and f (A ) is a continuous bounded differen- 
tiable function of A for co > A  > 0 but is not differentiable at A = 0 where f ( A )  has a zero 
and a branch point (see note added in proof). Each term in the sum over m in the above 
gives the contribution from trajectories which make m complete circuits of the origin. 
That such a contribution increases in proportion to m is consistent with the transition 
probability being proportional to the interaction time. Application of equation (2) 
enables the transition rate t to be re-expressed as a partial-wave sum in one of the 
following ways: 

(i) Y = even, when 

i m  
2 a  1-0 

= - 1 f ( l + $ )  

by application of (2) with a = 0. The validity of the theorem depends upon f ' ( A )  = 
af (A) /aA existing at each of the points A = 1 + $ , 1 =  0, 1,2,  . . . and upon f (A)  possessing 
a Fourier series expansion over any unit interval in the range 0 < A  6 00. In this case the 
function f ( A )  is given as satisfying both these conditions. 

This case is more tricky on account of f(A) not being differentiable at A = 0. However, 
we can make use of the fact that f ( A )  is bounded throughout the closed interval 
0 Q A Q 00 and determine t from 

(ii) Y =odd. 

m m 

t = ,gm ji+y+ mf(A) exp(2~imA) dA 

m 

= lim m f(A) exp(2aimA) dA 
r+o+ m=-m 

(for the sense in which this limit exists, see note added in proof.) 

m 
= lim m exp(-2?rim) f (A + E )  exp[2aim (A + E ) ]  dA 

€-DO+ m=-m 

m m 
= lim m exp[-2aim (1 - E ) ]  I f (A +e)  exp(2rimA) dA. 

e+o+ m=-m 0 

Theorem (2) is applicable provided we choose a so that a = e -$, whence 

t = lim f m exp[2aim(a -$)I f(A + a  +)) exp(2maiA) dA 
e+o+ ,=%--CO 

i m  
2 a  1-0 

=- f ( l + l )  

provided that f ' ( A )  = af/aA exists and is continuous at each of the points A = 1 + 1 = 
1 , 2 , 3  ,.... 

The partial-wave representations of t thus obtained may be subsequcntly treated 
using the Watson-Regge transformation in which only the resonant (pole) contribu- 
tions from the elastic s matrix are included. 



1954 B J B Crowley 

2. Proofs 

We begin by proving (1) given that the function f ( x )  satisfies the conditions set out prior 
to equation (1). By considering the Fourier series expansion of the function g ( x )  = 
f(x + l ) ,  for n -$<a + I  < N +3 and a - f < x  <a +$, we find that 

f ( y  + I )  exp[2mtri(y - a ) ]  dy exp[-2mtri(x -a)], 1 
m a +$ 

f ( x + O =  c 
m = - m  

(3) 

where the sum on the right-hand side is over all integer values of m. In particular, if 
la 1 < f, setting x = 0 yields 

f(l) = f [*Yif(y + I )  exp(2mriy) dy 

A + a - t )  exp[2mtri(h + a -4)] dh, I E N .  (4) 

Finally, summing both sides of (4) over integer values of 1 in the range n s 1s N yields 
N N 1+1 

C f(1) = 2 exp[2mtri(a -$)I C J f ( ~  + a  -3) exp(2m7rih) dh 
i = n  m=-m i =n  1 

N + l  

= 2 exp[2m.ni(a -$)I In f ( A  + a  -4) exp(2m.nih) dh 
m =--Cc 

which is the result (1). 
The proof of (2) when fk(x) exists and is continuous at each of the points x = 1 = a, 

n + 1, . . . N, follows by differentiating both sides of (3) k times with respect to x and 
proceeding as before. This proof breaks down, for example, if fk (x) is Dirichlet and has 
a discontinuity at one or more of the points x = 1. In this case we can make use of the first 
result (1) by noting that the right-hand side contains a redundant parameter a which 
may take on any real value in the range / a (  <$. Differentiating both sides of (1) with 
respect to a yields: 

O = 
m N i l  

27rim exp[2mtri(cu -311 I, f ( h  +a -+) exp(2mtrih) dh 
m = - m  

InNi1 m 
+ C exp[2mri(a -f)] f ' ( h  + a  -1) exp(2mtrih) dh. 

m = - m  

Now, since f l ( x )  is a Dirichlet function, the second sum on the right is, by (11, a valid 
representation of the sum, 

I = n  

Hence 

N m 

1 f ' ( l )  = -2mtri exp[2mtri(a -f)] I n N + ' f ( A  +a -3) exp(2mtriA) dA, ( 5 )  
I = n  m = - m  

which completes the proof for k = 1. The proof for general k follows by induction. 
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Note added in proof. It should be noted that, throughout this paper X:--.- is used in a special sense as follows: 
If f ( m )  is afunction for which exp[i(-ym)]f(m)+O as m+w, Vy>O,  then 

m m 

In this way, sums over m may be treated as if uniformly convcrgent (provided that the limit y + O+ exists). In 
particular, it can be shown that 

) 1 exp[-im(z - iy)] - exp[-in(z - iy)] 
( f exp(2mmiz)= lim - 

m--m y + ~ +  2i sin[a(z -iy)l sin[m(z +iy)] 

for z E W, which, when applied to the sum over m on the RHS of (1) yields the Watson (W) transform, 

where the contour C ( a )  is a simple closed Jordan curve encircling, in a positive sense, the segment of real ( A )  
axis between A = n -$+a and A = N +$+a. Evaluating the integral directly, by application of Cauchy's 
theorem, reveals a direct correspondence between the poles of cosec(mA) lying within C and terms of the sum 
on the LHS of (N.3). The above thus express the right-hand sides of equations (1,2,4 etc) as Dirichlet 
functions of a, for any a E R. (For non-half-integer values of a, the same result follows by setting x = n, n E RI, 
in equation (3) when the RHS of (4) yields f ( l +  n )  for (a - nl< i ) .  When a takes on half-integer values, the 
contour C passes through a pole of cosec(mA) giving rise to a contribution equal to one-half of the residue 
(x2ni). Thus, at such a point, the function of a has a Dirichlet-type discontinuity. For example, setting 
a = k 1 in (4) yields $ [ f ( l )  +f(l f l)] respectively. However, when f ( x )  possesses branch points, the functions 
on the right-hand sides of (1,2,4 etc) are defined onlyfor values of a for which the contour C is closed on the 
Riemann surface (i.e. C does not cross cuts). Branch points (and associated cuts) must always lie outside C 
and therefore give rise to no contribution even when Q is allowed to approach a limit in which a branch point 
lies on C. 

In this manner one can achieve an alternative proof of 8 l(ii) by considering the W-transform of X z l  f'(1) 
with the contour taken to the right of the branch point of f (1)  at A = 0. Integration by parts yields a contour 
integral involving f ( A ) ,  after which the contour may be taken arbitrarily close to the branch point without 
actually enclosing it. Finally, reversing the above procedure, whereby the W-transform was obtained from 
(1). yields the original expression for t (as given in 8 l(ii)) with the limit c + O+ outside the sum. 
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